Blue: correcting sequencing errors using consensus and context
Motivation: Bioinformatics tools, such as assemblers and aligners, are expected to produce more accurate results when given better quality sequence data as their starting point. This expectation has led to the development of stand-alone tools whose sole purpose is to detect and remove sequencing errors. A good error-correcting tool would be a transparent component in a bioinformatics pipeline, simply taking sequence data in any of the standard formats and producing a higher quality version of the same data containing far fewer errors.