Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

Author summary We determined the binding sites of six novel human norovirus specific Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) using X-ray crystallography. The unique Nanobody recognition epitopes were correlated with their potential neutralizing capacities. We showed that one Nanobody (Nano-26) bound numerous genogroup II genotypes and interacted with highly conserved capsid residues. Four Nanobodies (Nano-4, Nano-26, Nano-27, and Nano-42) bound to occluded regions on the intact particles and impaired normal capsid morphology and particle integrity. One Nanobody (Nano-14) bound contiguous to the HBGA pocket and interacted with several residues involved in binding HBGAs. We found that the Nanobodies delivered multiple inhibition mechanisms, which included steric obstruction, allosteric interference, and disruption of the capsid stability. Our data suggested that the HBGA pocket might not be an ideal target for drug development, since the surrounding region is highly variable and inherently suffers from lack of conservation among the genetically diverse genotypes. Instead, we showed that the capsid contained other highly susceptible regions that could be targeted for virus inhibition.See it on Scoop.it, via Viruses and Bioinformatics from Virology.uvic.ca
Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization
Source: Viral Bioinformatics

You may also like...