How to knock out herpesvirus RNA transport — with applications from cold sores to cancer

A new approach has been developed to combat diseases caused by herpesvirus infections, including everything from cold sores to cancer. Researchers at the University of Leeds have discovered a way to prevent herpesviruses hijacking important pathways in cells which are required for the virus to replicate and cause disease.Professor Adrian Whitehouse from the School of Molecular Biology and Astbury Centre for Structural Molecular Biology at the University led the five year study, the results of which are published today in the journal Nature Microbiology. Prof Whitehouse said: “We’ve spent several years demonstrating that a protein found in all herpesviruses, recruits a protein complex in the host cell, called human TREX, to help stabilise and transport herpesvirus RNAs out of a cell’s nucleus so they are turned into viral proteins. “Now we have identified a compound which can disrupt this essential virus-host cell interaction which in turn prevents herpesviruses replicating and producing infectious particles.” The approach the researchers used was unique as it targeted the enzyme activity of a key component of the cellular human TREX complex, known as UAP56.  Inhibiting t his activity prevented the remodelling of the human TREX complex which stopped the interaction with the viral protein. The project is a collaboration between virologists led by Professor Whitehouse and a team of chemists led by Dr Richard Foster also from the University of Leeds. Dr Foster’s team performed a virtual screen of thousands of compounds to identify potential inhibitors. These were then tested for their ability to stop herpesvirus replication without damaging the host cell.See it on Scoop.it, via Viruses and Bioinformatics from Virology.uvic.ca
How to knock out herpesvirus RNA transport — with applications from cold sores to cancer
Source: Viral Bioinformatics

You may also like...